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Abstract

We adopt an earlier approach of using the set of transreal numbers as a
total semantics, supplying classical truth values, dialetheaic values, fuzzy
and gap values. We generalise Boolean algebras to trans-Boolean algebras,
established on the set of transreal numbers. We give a formal proof that
this total, transreal semantics contains classical, fuzzy and paraconsistent
semantics by establishing homomorphisms with trans-Boolean algebras.
We establish a trans-Cartesian space where the axes are atomic proposi-
tions, the co-ordinates are transreal numbers, points are possible worlds,
and the set of all points is the set of all possible worlds. We show that
this set is a topological metric space. Hence we can measure distances be-
tween possible worlds. We generalise vector spaces to transvector spaces
so that we can apply geometrical transformations to possible worlds. We
define accessibility relations between possible worlds in terms of translin-
ear transformations. Finally we prove the existence of hypercyclic vectors
in this transreal space of all possible worlds, which is to say we prove that
there are universal possible worlds, any one of which approximates all
possible worlds by repeated applications of a single, translinear, actually
linear, operator.

Keywords: transreal numbers, logic, total semantics, possible worlds, hyper-
cyclic vectors.

Introduction

We set out to show that there are universal possible worlds which have the
topological property of being hypercyclic, which means they can access ev-
ery world in sequences of worlds that comes arbitrarily close to every possible
world. Such universal worlds are theories of everything – everything that can
be expressed in written languages - including everything meaningful and every-
thing nonsensical. That there are such worlds, that there are infinitely many
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of them and that they are spread, infinitely densely, throughout the space of
all possible worlds seems, to us, worthy of remark. For example it means that
there are many hypercyclic worlds which come arbitrarily close to describing
the real world we live in and which, by virtue of being hypercyclic, can de-
scribe all possible worlds. This means it is possible that the human mind
might embark on a never ending process of discovering everything.

Our method of proof is to establish the space of all possible worlds as a
geometrical space and to prove certain algebraic and topological properties of
that space. Along the way we find it expedient to generalise various logical
and mathematical entities so that they are fit for our purpose. We consider
various philosophical issues both in this Introduction and, more fully, in the
Discussion.

We begin by considering what set we should use as semantic values, that
is as truth values. This is a critical decision because this set will provide the
co-ordinate values for our logical space. In [3][16] we proposed using the set of
transreal numbers.

Figure 1: Transreal Number Line

The transreal numbers [5][35] are made up of the real numbers, together
with three, definite, non-finite numbers: negative infinity, positive infinity, and
nullity. The proof of consistency of the transreal arithmetic can be found in
[35]. In Figure 1 the real numbers are shown as a continuous line of some
finite length in the figure. The axis is scaled to allow all real numbers to be
laid out in the figure. Positive infinity, ∞, lies to the right of the real-number
line, but after a space. This space is a necessary and essential property of the
transreal numbers [4][34][33]. Similarly negative infinity, −∞, lies to the left
of the real-number line, after a space. Nullity, Φ, lies off the real number line.
All of the real numbers and both positive and negative infinity are ordered so
that negative infinity is the smallest of these numbers and positive infinity is
the largest of them. Nullity is not ordered, it is neither small nor large, nor
any size in between. Its size is nullity.
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In [3][16] negative infinity models the classical truth value False and pos-
itive infinity models the classical truth value True. The real numbers (in the
range from zero to one) model fuzzy values that describe the extent to which an
element is a member of a set [43][18]. The entire set of real numbers models di-
aleathic values that have degrees of both falsehood and truthfulness [12][31][32].
Negative values are more False than True, positive values are more True than
False and zero is equally False and True. Nullity models gap values that are
neither False nor True and which, more generally, have no degree of falsehood
or truthfulness [39][14][38]. Thus we can model the semantic values of many
logics.

We generalise the notion of Boolean logic to trans-Boolean logic and prove
that the transreal numbers do model classical, fuzzy and a particular paracon-
sistent logic by establishing homomorphisms between these logics and trans-
Boolean logic.

We note, in passing, that the transreal numbers may be extended by the
addition of transfinite ordinals that fall in the space between the reals and in-
finity and by their reciprocals which fall between zero and all rational numbers,
producing a hyperdense part of the line shown in Figure 1. We make no use of
these additional numbers here but we note that they are available to support
those areas of logic that rely on them.

The idea of logical space is inspired by Wittgenstein’s conception that the
world’s logical form is given by a picture that is a “configuration of objects.”
See [41][42] sections 2, 3 and, especially 3.4. Thus, just as physical objects are
arranged in physical space, so logical objects are arranged in a “logical space”
[13]. Wittgenstein did not define precisely his notion of logical space but we
define ours here.
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Figure 2: Trans-Cartesian Axes

Figure 2 shows a generalisation of a 2D Cartesian co-ordinate frame. In-
stead of laying off the axes as real numbers, we lay them off as transreal num-
bers. Thus the horizontal abscissa can take on any transreal number as value
and, entirely independently of this, the vertical ordinate can take on any tran-
sreal number. In our topological proofs we use indefinitely many axes where
any or all co-ordinates can be nullity and, motivated by Frege’s notion of com-
positionality [15][19], we require that logical connectives, applied to a gap value,
produce a gap value as result.

We notionally label each axis with a unique atomic proposition so that a
co-ordinate, on a labelled axis, is the degree to which the labelled proposition
is True, False or Gap. Thus points in this space are arrangements of semantic
values of atomic propositions. In other words, points in this space are possible
worlds. Once we have established that our logical space supports a trans-
Boolean algebra, we may take the axes or else points to be terms in a trans-
Boolean algebra.

The set of all possible worlds has cardinality at least as great as the cardi-
nality of the set that has all combinations of the classical values True and False
in each co-ordinate. This cardinality is 2ℵ0 . The set of points in our transreal
space has the cardinality, c, of the real number line. If we take Cantor’s contin-



Universal Possible Worlds 235

uum hypothesis true then c = 2ℵ0 = ℵ1 so that our logical space has sufficient
cardinality to describe the classical set of all possible worlds. In fact, by our
construction, there is a one-to-one correspondence between the points in our
logical space and the worlds in the set of all possible worlds whose parameters
vary over classical, real and transreal values. This establishes the labelling of
the points in our logical space.

We then generalise the notion of a vector so that it can operate as a
transvector in our trans-Cartesian space. We give a distance metric so that we
can talk about the distance between any two possible worlds and can give the
vector that passes from one world to another. In the Discussion we show how
our geometrical space relates to the system of spheres described by Lewis in
his celebrated book Counterfactuals [24].

We define accessibility between possible worlds, very generally, as the exis-
tence of suitable translinear transformations in our logical space.

We extend the topological notion of hypercyclicity [8][25] so that it holds
in our logical space. A hypercyclic vector has indefinitely many (ℵ0) elements.
When it is operated on by a certain kind of linear operator, it generates new
vectors in a structure called an orbit. The elements of an orbit lie arbitrarily
closely to any element in the space and sequences of elements can be chosen,
from the orbit, so that they converge, arbitrarily closely, to any element in the
space. We use the backward shift operator to generate an orbit of possible
worlds from a single, hypercyclic, possible world. The backward shift operator
shuffles all of its co-ordinate values down one place so that the first co-ordinate
value drops off the beginning of the vector, in a process that is exactly like
running Hilbert’s hotel paradox backwards. Some sequences of possible worlds
then converge arbitrarily closely to any particular possible world and there
are so many sequences that every possible world is approached in this way.
The proof shows that there are infinitely many (at least ℵ0) hypercyclic, or
universal, worlds and that these are spread with infinite density throughout
the space of possible worlds.

1 Transreal Numbers

The transreal numbers, pictured in Figure 1, were proposed in order to apply
them to computing [1]. This set of numbers, denoted by RT , is formed by
the real numbers and the three novel elements negative infinity, infinity and
nullity, which are denoted, respectively, by −∞, ∞ and Φ. Therefore RT =
R ∪ {−∞,∞,Φ}. In the set of transreal numbers, division by zero is allowed.
Specifically −1/0 = −∞, 1/0 = ∞ and 0/0 = Φ. The arithmetic and order
relation defined on RT is such that, for each x, y ∈ RT , it follows that [5]:
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i) If x ∈ R then −∞ < x <∞.

ii) If x ∈ RT the following does not hold x < Φ or Φ < x.

iii) −(∞) = −∞, −(−∞) =∞ and −Φ = Φ.

iv) ∞−1 = 0, (−∞)−1 = 0, Φ−1 = Φ and 0−1 =∞.

v) ∞+x =

{
Φ , if x ∈ {−∞,Φ}
∞ , otherwise

, −∞+x = −(∞−x) and Φ +x = Φ.

vi) ∞× x =


Φ , if x ∈ {0,Φ}
−∞ , if x < 0
∞ , if x > 0

, −∞× x = −(∞× x) and Φ× x = Φ.

vii) x− y = x+ (−y).

viii) x÷ y = x× y−1.

The transreal numbers are an extension of the real numbers and can be
made into a topological space1 with the following properties [4][33]. The open
subsets, of the transreal topology, are defined by arbitrarily many unions of
finitely many intersections of the following four kinds of interval:

i) (a, b) where a, b ∈ R,

ii) [−∞, b) where b ∈ R,

iii) (a,∞] where a ∈ R and

iv) {Φ}.
1A set is a topological space if and only if it has a topology. Let X be an arbitrary set. As

usual let P(X) be the powerset of X, that is is the set of all subsets of X. Then τ ⊂ P(X) is a
topology on X if and only if ∅, X ∈ τ , any union of sets in τ belongs to τ and any intersection
of finitely many sets in τ belongs to τ . The elements of τ are called open (sub)sets of X [27].



Universal Possible Worlds 237

Thus RT is a topological space. Furthermore RT is a Hausdorff2, disconnected3,
separable4 and compact5 space. Notice that Φ is the unique isolated point6 of
RT . Moreover the topology of RT contains the topology of R, that is, when it is
restricted to subsets of R, it coincides with the topology of R. In this way the
transreal limit is a generalisation of the real limit. Firstly wherever a real num-
ber occurs as the limit of a real sequence, that real number occurs identically
as the limit of the corresponding transreal sequence. Secondly wherever infini-
ties occur as limit symbols in a divergent, real sequence, they occur as definite,
transreal numbers in the corresponding, convergent, transreal sequence.

The set of transreal numbers is also a metrisable space7 with the following
metric (among many others): d : RT × RT → R,

d(x, y) =


0, if x = y
2, if x = Φ or else y = Φ
|ϕ(x)− ϕ(y)|, otherwise

, (1)

where ϕ is the homeomorphism8 ϕ : [−∞,∞]→ [−1, 1],

ϕ(x) =


−1 , if x = −∞
x

1 + |x|
, if x ∈ R

1 , if x =∞
.

2 Total Semantics

In this section we develop a model for a total semantics. As already stated,
the semantics is to contain at least the classical truth values, a contradiction
(paraconsistent or dialaethetic) value, fuzzy values and a gap value [3][16].

2A topological space X is a Haussdorf space if and only if for any distinct x, y ∈ X, there
are open sets U, V ⊂ X such that x ∈ U , y ∈ V and U ∩ V = ∅ [27].

3A topological space X is disconnected if and only if there are non-empty, open sets
U, V ⊂ X such that U ∪ V = X and U ∩ V = ∅ [27].

4A topological space X is said to be separable if and only if it has a dense countable
subset. A subset D, of a topological space X, is dense in X if and only if all element of X
are elements or limit points of D [27].

5A topological space X is said to be compact if and only if, for all classes of open subsets

of X, {Uα; α ∈ I} (where I is an arbitrary set) such that X ⊂
⋃
α∈I

Uα, there is a finite subset

{Uαk ; 1 ≤ k ≤ n} (for some n ∈ N) of {Uα, α ∈ I} such that X ⊂
n⋃
k=1

Uαk [27].

6An element, x, of a topological space X, is said to be an isolated point if and only if
there is a neighbourhood U ⊂ X of x such that U ∩ V = ∅ for all open V ⊂ X with V 6= U .

7A topological space is metrisable if and only if it possesses a metric which is compatible
with its topology [27].

8A homeomorphism is a continuous bijective function whose inverse is continuous [27].
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Classical logics are grounded on the principle that each proposition assumes
one and only one of the following semantic values: False, True. Thus the set
of semantic values is given by {F, T} and the connectives are determined by
the functions [37] [40]:

¬c : {F, T} −→ {F, T}
¬cF = T , ¬cT = F

∨c : {F, T} × {F, T} −→ {F, T}
F ∨c F = F , F ∨c T = T
T ∨c F = T , T ∨c T = T

∧c : {F, T} × {F, T} −→ {F, T}
F ∧c F = F , F ∧c T = F
T ∧c F = F , T ∧c T = T

The subscript “c” indicates that the connectives are defined in classical logic.
Dialetheism is allowed in paraconsistent logics, that is, one admits the exis-

tence of a true proposition whose negation is also true [30] [31]. Paraconsistent
logics encompass many calculi. The common property of these calculi is that
they do not explode following a contradiction. In classical logic, if we admit
a contradiction, as a premise or hypothesis of an inference, then every well
formed formula of the language is a theorem [26][11]. Paraconsistent logics
interdict such “syntactic explosions.”

One of the best known paraconsistent logics is the “logic of paradox,” cre-
ated by the English logician Graham Priest [29]. In this paraconsistent logic,
we have a semantic value, δ, which represents a contradiction or dialetheia.
That is, δ is the semantic value of a proposition that is both True and False.
The simplest form of paraconsistent logic is to consider the set of semantic
values {F, δ, T} and the connectives determined by the functions [7]:

¬p : {F, δ, T} −→ {F, δ, T}
¬pF = T , ¬pδ = δ, ¬pT = F

∨p : {F, δ, T} × {F, δ, T} −→ {F, δ, T}
F ∨p F = F , F ∨p δ = δ, F ∨p T = T
δ ∨p F = δ, δ ∨p δ = δ, δ ∨p T = T
T ∨p F = T , T ∨p δ = T , T ∨p T = T

∧p : {F, δ, T} × {F, δ, T} −→ {F, δ, T}
F ∧p F = F , F ∧p δ = F , F ∧p T = F
δ ∧p F = F , δ ∧p δ = δ, δ ∧p T = δ
T ∧p F = F , T ∧p δ = δ, T ∧p T = T
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The subscript “p” indicates that the connectives are defined in a paraconsistent
logic.

In fuzzy logics one admits that propositions can assume degrees of truth
and degrees of falsehood. In general these degrees vary continuously. The set
of fuzzy semantic values is usually given as the interval of real numbers [0, 1]
and the connectives are the functions determined by [43]:
¬f : [0, 1] −→ [0, 1]

¬fx = 1− x

∨f : [0, 1]× [0, 1] −→ [0, 1]
x ∨f y = max{x, y}

∧f : [0, 1]× [0, 1] −→ [0, 1]
x ∧f y = min{x, y}

The subscript “f” indicates that the connectives are defined in a fuzzy logic.
We highlight, further, a semantic value, γ, which corresponds to a “gap.”

That is, γ is the semantic value of a proposition that is neither true nor false.
This value is inspired by the ideas of Quine and Strawson [39][14]. In order
to determine the action of the logical connectives at γ, we resort to Frege’s
principle of compositionality. According to Frege [15], if we admit a whole, in
which one of its parts lacks reference, then the whole lacks reference. Following
Jansen, Frege’s principle of compositionality can be stated this way: “The
meaning of a compound expression is a function of the meaning of its parts and
the syntactic rule by which they are combined” ([19], p.115). More precisely
what we call Frege’s principle of compositionality is a particular instance of
such a principle. We take it that when an expression has at least one of its
parts without any reference then the whole expression lacks reference. In terms
of propositions, if one allows a molecular proposition, whatever it may be, in
which an atomic proposition is a gap, then the molecular proposition is a gap.
Frege’s principle is very intuitive – basically it says that a whole must have all
of its parts, otherwise it is not a whole, but is nothing. As a consequence of
Frege’s principle, we have:

¬gγ = γ, γ ∨g x = x ∨g γ = γ and γ ∧g x = x ∧g γ = γ for all x.

Our desire is to get a set of numbers which can serve as the set of semantic
values encompassing the classical, dialetheaic, fuzzy and gap values. We shall
see that transreal numbers are a good and sufficient candidate for this set.

Definition 2.1 We call each element of RT a semantic value. Hence RT is
the set of semantic values.
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Next we define the functions negation, disjunction and conjunction on RT .

Definition 2.2 Let ¬ denote the function negation, given by

¬ : RT −→ RT

x 7−→ ¬x = −x .

Let ∨ denote the function disjunction, given by

∨ : RT × RT −→ RT

(x, y) 7−→ x ∨ y =

{
Φ , if x = Φ or y = Φ
max{x, y} , otherwise

and let ∧ denote the function conjunction, given by

∧ : RT × RT −→ RT

(x, y) 7−→ x ∧ y =

{
Φ , if x = Φ or y = Φ
min{x, y} , otherwise

.

We want to show that the above defined structure contains the classical,
dialaetheiac, fuzzy and gappy structures defined at the beginning of this sec-
tion. For this, we need to clarify what we mean by, “one structure contains
another.”

Definition 2.3 A trans-Boolean algebra is a structure (X,¬,∨,∧,⊥,>), where
X is a set, ⊥,> ∈ X, ¬ is a function from X to X and ∨ and ∧ are func-
tions from X × X to X such that the following properties are satisfied: (i)
existence of an identity element, (ii) commutativity, (iii) associativity and (iv)
distributivity. Thus, for all x, y, z ∈ X:

i) x ∨ ⊥= x and x ∧ > = x.

ii) x ∨ y = y ∨ x and x ∧ y = y ∧ x.

iii) x ∨ (y ∨ z) = (x ∨ y) ∨ z and x ∧ (y ∧ z) = (x ∧ y) ∧ z.

iv) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Note that the structure introduced by Definition 2.2 is a trans-Boolean al-
gebra. That is, (RT ,¬,∨,∧,−∞,∞) is a trans-Boolean algebra. Note also that
({F, T},¬c,∨c,∧c, F, T ), ({F, δ, T},¬p,∨p,∧p, F, T ) and ([0, 1],¬f,∨f,∧f, 0, 1),
mentioned at the beginning of this section, are trans-Boolean algebras.

Definition 2.4 Let (X,¬X ,∨X ,∧X ,⊥X ,>X) and (Y,¬Y ,∨Y ,∧Y ,⊥Y ,>Y ) be
two trans-Boolean algebras and let f be a mapping f : X −→ Y . We say that
f is a homomorphism of trans-Boolean algebras if and only if
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i) ¬Y ◦ f = f ◦ ¬x,

ii) ∨Y ◦ (f × f) = f ◦ ∨X ,

iii) ∧Y ◦ (f × f) = f ◦ ∧X ,

iv) f(⊥X) =⊥Y and

v) f(>X) = >Y .

Theorem 2.5 There are homomorphisms of trans-Boolean algebras

i) from ({F, T},¬c,∨c,∧c, F, T ) to (RT ,¬,∨,∧,−∞,∞),

ii) from ({F, δ, T},¬p,∨p,∧p, F, T ) to (RT ,¬,∨,∧,−∞,∞) and

iii) from ([0, 1],¬f,∨f,∧f, 0, 1) to (RT ,¬,∨,∧,−∞,∞).

Proof. Let f : {F, δ, T} −→ RT where f(F ) = −∞, f(δ) = 0, f(T ) =∞ and

g : [0, 1] −→ RT where g(x) = tan
(
πx− π

2

)
for all x ∈ [0, 1] (For function tan

in RT see [2][33]). It is not difficult to see that f|{F,T}, f and g are, respectively,
the required homomorphisms. �

Remark 2.6 By the Theorem 2.5, we say that the general trans-Boolean al-
gebra (RT ,¬,∨,∧,−∞,∞) contains the three specific trans-Boolean algebras
({F, T},¬c,∨c,∧c, F, T ) of classical logic, ({F, δ, T},¬p,∨p,∧p, F, T ) of Priest’s
paraconsistent logic and ([0, 1],¬f,∨f,∧f, 0, 1) of fuzzy logic. Furthermore, ¬Φ =
Φ, Φ ∨ x = x ∨ Φ = Φ and Φ ∧ x = x ∧ Φ = Φ for all x ∈ RT .

Remark 2.6 leads us to the following interpretation of the set of semantic
values, RT :

i) −∞ and ∞ correspond, respectively, to the classical values False and
True,

ii) 0 corresponds to the dialetheiac value,

iii) the interval [−∞,∞] corresponds to the fuzzy values and

iv) Φ corresponds to the gap value.
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3 Possible Worlds

As usual we assume that the set of atomic propositions is a countable set
because propositions are written in an enumerable language, which may be
a synthetic language or a natural language such as Portuguese or English.
We assume, further, that the set of atomic propositions is not finite because
we suppose we can name any countable number of elements from the con-
tinuum: which is to say we assume that there are ℵ0 atomic propositions.
Hence the set of atomic propositions can be written in the form {Pi; i ∈ N} =
{P1, P2, P3, . . . }, where Pi 6= Pj whenever i 6= j.

The concept of possible worlds is very important in logic. According to
Leibniz [23], God has in His mind all worlds that could be created, these are
actual in His mind. He chose one of these worlds to be the real world (the
best world He could create). According to Leibniz there are laws or statements
that are true at every world, these are necessary propositions or Reason’s truth,
while some other propositions are true at the real world, but not in all worlds:
there is some world at which these contingent propositions do not hold. So we
have, in Leibniz’s approach, a metaphysical basis for interpreting the relation
between propositions and possible worlds. For further discussion of Leibniz’s
conception of possible worlds see [22]. Intuitively a possible world is a binding
of a proposition to its semantic values. That is, at a given possible world, each
atomic proposition takes on a semantic value in RT . Thus we can interpret
a possible world as a function from {P1, P2, P3, . . . } to RT . But this forms a
sequence of elements from RT . So, denoting the set of the sequences of elements
from RT by (RT )N, we adopt the following definition.

Definition 3.1 We call each element of (RT )N a possible world. Hence (RT )N

is the set of all possible worlds.

In this way each possible world is a point in the space (RT )N. Given a
possible world w = (wi)i∈N ∈ (RT )N, for each i ∈ N, wi corresponds to the
semantic value of Pi in w.

One question that arises is whether there is any relation between possible
worlds? Motivated by Kripke’s Modal Logic [20][10], we ask how interactions
occur between possible worlds, that is, how do possible worlds communicate
with each other? Kripke offers a semantics for Modal Logic, based on the
notion of a “modal frame.” A modal frame is a pair, < W,R >, in which W
is a set of possible worlds, and R is a binary relation between possible worlds;
this relation is called an “accessibility relation.” Intuitively the accessibility
relation can be seen as a “path” between worlds. This path is used to define the
condition by which a proposition is True or False at a world w. For Kripke’s
semantics see [21]. We want to propose a mathematical object that plays the
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role of an accessibility relation from a possible world w to a possible world
u. We want this relation to be reflexive and transitive. As we shall see, the
existence of a continuous linear transformation T on (RT )N, such that T (w) = u
is a relation with the desired characteristics. However, linear transformations
are usually defined in vector spaces9, but, due to the structure of the transreal
numbers, (RT )N is not a vector space. However, (RT )N has some but not all
of the properties of a such space. Motivated by this, we define a transvector
space as follows.

Definition 3.2 A nonempty set, V , is called a transvector space on RT if
and only if there are two operations + : V × V −→ V and · : RT × V −→ V
(named, respectively, addition and scalar multiplication), such that the fol-
lowing properties are satisfied: additive commutativity, additive associativity,
scalar multiplicative associativity, additive identity and scalar multiplicative
identity. Which are, respectively, for any w, u, v ∈ V and x, y ∈ RT :

i) w + u = u+ w.

ii) w + (u+ v) = (w + u) + v.

iii) x · (y · w) = (xy) · w.

iv) there is o ∈ V such that o+ w = w.

v) 1 · w = w.

The elements of V are called transvectors. Further x ·w is customarily denoted
as w · x, xw or wx and o as 0.

Let w, u ∈ (RT )N, where w = (wj)j∈N and u = (uj)j∈N, and x ∈ RT . We
define w+u := (wj +uj)j∈N and xw := (xwj)j∈N and we denote (0, 0, 0, . . . ) ∈
(RT )N simply by 0. We are conscious that we abuse notation in the above
definition. However, the reader will have no difficulty in understanding that,
in w + u := (wj + uj)j∈N, the symbol, +, on the left hand side of the equality
refers to the addition which is being defined on (RT )N and the symbol, +, on
the right hand side of the equality refers to addition on RT which addition has
a prior definition. Analogously for xw := (xwj)j∈N.

Notice that, with these operations, (RT )N is a transvector space on RT .

9A nonempty set, V , is called a vector space on a field, F , if and only if there are two
operations + : V × V −→ V and · : F × V such that, for any w, u, v ∈ V and x, y ∈ F :
(Additive commutativity) w+ u = u+w, (Additive associativity) w+ (u+ v) = (w+ u) + v,
(Distributivity of scalar multiplication with respect to vector addition) x·(w+u) = x·w+x·u,
(Distributivity of scalar multiplication with respect to field addition) (x+y) ·w = x ·w+y ·w,
(Scalar multiplicative associativity) x · (y · w) = (xy) · w, (Additive identity) there is o ∈ V
such that o+w = w, (Additive inverse) for all w ∈ V there is −w ∈ V such that w+(−w) = o
and (Scalar multiplicative identity) 1 · w = w [28].
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Definition 3.3 Let V and W be transvector spaces on RT . We say that T :
V → W is a translinear transformation on V if and only if for all w, u ∈ V
and x ∈ RT ,

i) T (w + u) = T (w) + T (u) and

ii) T (xw) = xT (w).

Definition 3.4 Given two arbitrary possible worlds w, u ∈ (RT )N, we say that
T : (RT )N −→ (RT )N is a communication from w to u if and only if T is a
continuous, translinear transformation and satisfies:

i) every constant sequence is a fixed point of T , in other words, for each
v = (vi)i∈N ∈ (RT )N such that vi = v1 for all i ∈ N, T (v) = v and

ii) T (w) = u.

Definition 3.5 Given two arbitrary possible worlds w, u ∈ (RT )N, we say that
wRu if and only if there is a communication from w to u. We call the relation
R an accessibility relation. We say that w accesses u or that u is accessible
from w if and only if wRu.

Proposition 3.6 The accessibility relation, R, satisfies the reflexive and tran-
sitive properties. That is, for all w, u, v ∈ (RT )N, respectively,

i) wRw.

ii) if wRu and uRv then wRv.

Proof. Let there be arbitrary w, u, v ∈ (RT )N. The identity function, Id, is
a communication from w to w, hence wRw. Now suppose that wRu and uRv,
that is, there is a communication, T , from w to u and a communication, S,
from u to v. So T, S : (RT )N −→ (RT )N are continuous, translinear transfor-
mations, such that every constant sequence is a fixed point of T and S and,
furthermore, T (w) = u and S(u) = v. Since the composition of continuous,
translinear transformations is a continuous, translinear transformation, S ◦ T
is a continuous, translinear transformation and, furthermore, every constant
sequence is a fixed point of S ◦T and (S ◦T )(w) = S(T (w)) = S(u) = v. Thus
S ◦ T is a communication from w to v, whence wRv. �
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3.1 Possible Worlds Which Accesses Any Other By Approxi-
mation

The set of all possible worlds (RT )N is a topological space, where the topology
is the product topology. That is to say, the set U ⊂ (RT )N is open if and only

if U =
∏
j∈N

Aj , where Aj is open on RT for all j ∈ N and Aj = RT , except for

a finite numbers of indexes j [27].

Remark 3.7 Notice that, since RT is a Hausdorff and separable space then
(RT )N is also a Hausdorff and separable space. Note also that, since RT is
compact, by Tychonoff Theorem ([27], Theorem 37.3), (RT )N is compact.

A topological space is a space that allows us to speak of neighbourhoods,
proximity and convergence. In a topological space we can give an exact sense
to the notion of “being close to.” In a topological space, E, a neighbourhood
of a point, a ∈ E, is an open set which contains a. Saying that for any
neighbourhood, U of a, there is some b ∈ U , with b different from a, means
that one can get a point, b, as close to a as one wants. According to our model
of logical space, possible worlds are points in the topological space (RT )N. This
allows us to speak of proximity and convergence with respect to possible worlds.
That is, we have an exact meaning for “a possible world is close to another”
and for “a succession of possible worlds converges to a determinate one” when
we use the usual definition of convergence of sequences in topological spaces.
That is to say, a sequence (w(n))n∈N ⊂ (RT )N converges to w ∈ (RT )N or w is
the limit of (w(n))n∈N or lim

n→∞
w(n) = w if and only if for each U ⊂ (RT )N, being

a neighbourhood of w, there is nU ∈ N such that w(n) ∈ U for all n ≥ nU .
Notice that, since (RT )N is a Hausdorff space, the limit of a sequence, if it
exists, is unique [27].

Now we introduce the concept of an hypercyclic operator, as developed in
functional analysis. The first examples of hypercyclic operators were obtained,
in the first half of the twentieth century, by G. Birkhoff [8] and G. MacLane
[25]. Since then hypercyclic operators have been developed to a considerable
degree. See [17] for a recent review. We use a particular hypercyclic operator,
the backward shift, to interpret our spatial model of all possible worlds.

An operator is a function whose domain and counter-domain are the same
set. Formally an operator, T , is hypercyclic if there is an element, x, of the
domain, such that every other element, of the domain, can be approximated by
recursive applications of T on x. That is to say, from just the operator, T , and
an hypercyclic element, x, related to T , we can obtain all others elements of the
domain by topological approximation. In other words we can come arbitrarily



246 W. Gomide, T. S. Reis and J. A. D. W. Anderson

closely to every possible world by recursively applying one operator on any
chosen hypercyclic world.

Hypercyclic operators are usually defined on topological vector spaces10 but
the idea of an hypercyclic operator makes sense in arbitrary topological spaces
so we can define hypercyclic operators on (RT )N.

Given a set X and a function f : X −→ X, we define the iterates of f as

f0 = IdX , f
1 = f, f2 = f ◦ f, f3 = f ◦ f2, . . . ;

where IdX the identity function on X. Also, for each x ∈ X, we define the
orbit of x related to f as

orb(x, f) := {x, f(x), f2(x), . . . }.

Definition 3.8 Let X be a topological space. A continuous operator11, T on
X, is said to be hypercyclic if and only if there is an x ∈ X such that orb(x, T )
is dense in X. In this case x is called an hypercyclic element of T . The set of
hypercyclic elements of T is denoted as HC(T ).

Remark 3.9 (Hypercyclic worlds come close to all worlds) The fact
that orb(x, T ) is dense in X means, in our model of logical space, that a hyper-
cyclic world generates a sequence of worlds such that every world is approached,
arbitrarily closely, by worlds in that sequence.

Now we will see that there exists an hypercyclic operator on (RT )N and,
next, we use this operator to interpret our model of possible worlds. Let
B : (RT )N −→ (RT )N, B(w1, w2, w3, . . . ) = (w2, w3, w4, . . . ). The operator
B is called a backward shift. Notice that B is a translinear transformation on
(RT )N. We will see that B is an hypercyclic operator on (RT )N. Bonet and
Peris give a proof that the operator B is hypercyclic on the Fréchet space KN

[9]. We just adapt that proof to the space (RT )N.

Proposition 3.10 The operator B is continuous in (RT )N.

Proof. Let U ⊂ (RT )N be an arbitrary open set. We have that U =
A1×A2×A3×· · · , where Aj is open on RT for all j ∈ N and Aj = RT , except for

10A topological vector space is a vector space endowed with a topology such that vector
addition and scalar multiplication are continuous functions and every singleton set is closed
[36].

11If X and Y are topological spaces, the function f : X → Y is said to be continuous in
x ∈ X if and only if, given a neighborhood V of f(x) in Y , there is a neighborhood U of x in
X such that f(U) ⊂ V . A function f : X → Y is said to be continuous in X if and only if f
is continuous in x, for all x ∈ X [27].
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a finite number of indexes j. Notice that B−1(U) = B−1(A1×A2×A3×· · · ) =
RT ×A1 ×A2 × · · · . In fact,

(w1, w2, w3, . . . ) ∈ B−1(A1 ×A2 ×A3 × · · · ) ⇔
(w2, w3, w4, . . . ) = B(w1, w2, w3, . . . ) ∈ A1 ×A2 ×A3 × · · · ⇔
(w1, w2, w3, . . . ) ∈ RT ×A1 ×A2 × · · · .

Clearly RT ×A1×A2×· · · is open. Since the pre-images of open sets in B are
open, B is continuous ([27], Theorem 18.1). �

Lemma 3.11 (Birkhoff Transitivity Theorem) Let X be a separable,
complete metric space and let f : X −→ X be a continuous function. If f
is topologically transitive, in the following sense: for any pair U, V of non-
empty, open subsets of X, there is n ∈ {0} ∪N such that fn(U) ∩ V 6= ∅, then
f is hypercyclic. And in this case, the set of hypercyclic elements is a dense
set in X.

Proof. Suppose that f is topologically transitive. Since X has a countable,
dense subset, the topology of X has a countable base. Let (Uk)k∈N be the
enumeration of this base. Then x has a dense orbit if and only if, for each
k ∈ N, there is an n ∈ {0} ∪ N, such that fn(x) ∈ Uk. That is to say the set,
D, of points whose orbit is dense, is given by

D =
∞⋂
k=1

∞⋃
n=0

(fn)−1(Uk).

Since f is continuous, for each k ∈ N,
∞⋃
n=0

(fn)−1(Uk) is open in X. Furthermore

each one of these sets is dense in X. In fact if V is a non-empty, open subset of
X then, by the hypothesised transitivity of f , we have that (fn)−1(Uk)∩V 6= ∅,
for some n ∈ {0}∪N, whence

∞⋃
n=0

(fn)−1(Uk)∩V 6= ∅. Since X is a Haussdorf,

compact space, by the Baire Theorem ([36], 1991; Theorem 2.2), D is dense
and, in particular, non-empty. �

Lemma 3.12 Let X,Y be topological spaces and let f : X −→ X, g : Y −→ Y
be continuous functions. If g is hypercyclic and there is a continuous function,
φ : Y −→ X, with dense image, such that f ◦ φ = φ ◦ g, then f is also
hypercyclic.
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Proof. Let there be an element, y ∈ Y , that has a dense orbit related to g.
If U is a non-empty, open subset of X then φ−1(U) is open and is a non-empty
subset of Y , because φ is continuous and has a dense image. Thus there is
n ∈ {0} ∪ N such that gn(y) ∈ φ−1(U). Since f(φ(y)) = φ(g(y)), one verifies,
by induction, that fn(φ(y)) = φ(gn(y)). Thus fn(φ(y)) = φ(gn(y)) ∈ U . Thus
φ(y) has a dense orbit related to f . �

Let X,Y be any sets and let f : X −→ X, g : Y −→ Y be functions. The
function f × g : X × Y −→ X × Y is defined as

(f × g)(x, y) = (f(x), g(y)).

Clearly (f × g)n = fn × gn, for all n ∈ {0} ∪ N. Furthermore if X,Y are
topological spaces and f, g are continuous then f × g is also continuous in the
product topology of X × Y .

Theorem 3.13 The operator B is hypercyclic in (RT )N.

Proof. For each n ∈ N, denote e(n) = ( 0, 0, . . . , 0︸ ︷︷ ︸
n−1 coordinates

, 1, 0, 0, . . . ), that is

e(n) = (wj)j∈N, where wn = 1 and wj = 0 for all j ∈ N \ {n}. Notice that

lim
n→∞

e(n) = 0. In fact, let U ⊂ (RT )N be a neighbourhood of 0. We have that

U = A1×A2×A3× · · · , where Aj is a neighbourhood of 0 in RT for all j ∈ N
and there is nU ∈ N such that Aj = RT for all j ≥ nU . Thus e(n) ∈ U for all
n ≥ nU .

Now denote, as cT00, the set of all sequences of transreal numbers such that
only a finite number of coordinates are not equal to zero. Notice that cT00 is
dense in (RT )N. In fact, for each arbitrary (wj)j∈N ∈ (RT )N, we take a sequence n∑

j=1

wje
(j)


j∈N

⊂ cT00 and we know that lim
n→∞

n∑
j=1

wje
(j) = (wj)j∈N.

Let be F : cT00 → cT00, where F (w1, w2, w3, . . . ) = (0, w1, w2, . . . ). Notice
that

Bn(Fn(u)) = u, for all u ∈ cT00 and for all n ∈ N, (2)

and
lim
n→∞

Bn(w) = 0, for all w ∈ cT00. (3)

Furthermore if u = (u1, u2, u3, . . . ) ∈ cT00 then there is k ∈ N such that uj = 0
for all j > k, whence u = u1e

(1) + · · · + uke
(k) and, so, Fn(u) = Fn(u1e

(1) +
· · ·+uke

(k)) = Fn(u1e
(1)) + · · ·+Fn(uke

(k)) = u1e
(1+n) + · · ·+uke

(k+n). Since
lim
n→∞

e(n) = 0, we have that lim
n→∞

Fn(u) = lim
n→∞

(u1e
(1+n)+· · ·+ lim

n→∞
uke

(k+n)) =
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lim
n→∞

(u1e
(1+n)) + · · ·+ lim

n→∞
(uke

(k+n)) = u1 lim
n→∞

e(1+n) + · · ·+ uk lim
n→∞

e(k+n) =

u1 · 0 + · · ·+ uk · 0 = 0. Thus

lim
n→∞

Fn(u) = 0, for all u ∈ cT00. (4)

Now let W1,W2, U1, U2 ⊂ (RT )N be arbitrary and non-empty, open sets.
Since cT00 is dense in (RT )N, there are w(1) ∈ W1 ∩ cT00, w(2) ∈ W2 ∩ cT00,
u(1) ∈ U1 ∩ cT00 and u(2) ∈ U2 ∩ cT00. It follows from (2) and (3) that

lim
n→∞

Bn(w(1)+Fn(u(1))) = lim
n→∞

Bn(w(1))+ lim
n→∞

Bn(Fn(u(1))) = 0+u(1) = u(1).

And it follows from (4) that

lim
n→∞

(w(1) + Fn(u(1))) = w(1) + 0 = w(1).

Thus there is n1 ∈ N such that w(1)+Fn(u(1)) ∈W1 andBn(w(1)+Fnu(1)) ∈ U1

for all n ≥ n1. In the same way there is n2 ∈ N such that w(2) + Fnu(2) ∈ W2

and Bn(w(2) + Fnu(2)) ∈ U2 for all n ≥ n2. By choosing n0 = max{n1, n2} we
see that (T × T )n0(W1 ×W2) ∩ (U1 × U2) 6= ∅. Thus B × B is topologically
transitive, whence, by Lemma 3.11, B ×B is hypercyclic in (RT )N × (RT )N.

Clearly the function φ : (RT )N × (RT )N → (RT )N, φ(x, y) = x satisfies the
conditions of Lemma 3.12 for B ×B and B. Thus B is hypercyclic. �

Remark 3.14 (Many hypercyclic possible worlds) As HC(B) is dense,
there are many hypercyclic, possible worlds in our model of logical space.

Since B is an hypercyclic operator, there is an hypercyclic transvector,
w, with respect to B. Since B is a continuous, translinear transformation
on (RT )N such that every constant sequence is a fixed point of B, w accesses
every element in orb(w,B). Since B is hypercyclic, orb(w,B) is dense in (RT )N.
This means that, given an arbitrary possible world, u, there is a sequence of
elements from orb(w,B) which converges to u. That is, there is a possible
world w, which accesses a sequence of possible worlds that converges to u,
whatever the possible world u.

4 Distance Between Possible Worlds

In addition to being a topological space, (RT )N is also a metric space12, with
compatible metric and topology. In a metric space we can speak of the distance

12A metric space is a set M endowed with a function d : M × M −→ R such that,
for any x, y, z ∈ M , d(x, y) ≥ 0, d(x, y) = 0 if and only if x = y, d(x, y) = d(y, x) and
d(x, z) ≤ d(x, y) + d(y, z) [27].
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between elements. Hence we can speak of the distance between possible worlds.
And, as the metric is compatible with the topology, the concepts previously
mentioned – neighbourhoods, proximity and convergence – are all respected by
the metric. In [27] there is a simple construction of a metric on RN compatible
with its topology. Below we adapt that construction to the space (RT )N.

Proposition 4.1 (RT )N is metrisable. More specifically, for each w, u ∈ (RT )N,
denote w = (wj)j∈N and u = (uj)j∈N, and let D : (RT )N×(RT )N → R be defined
as

D(w, u) = sup
j∈N

{
d(wj , uj)

j

}
,

where d is defined in (1). We have that D is a metric on (RT )N which induces
the topology of (RT )N.

Proof. Firstly, let us see that D is, in fact, a metric on (RT )N. Clearly, for
all w, u ∈ (RT )N: D(w, u) = 0 if and only if w = u; D(w, u) = D(u,w); and

D(w, u) ≥ 0. If w, u, v ∈ (RT )N then, for all j ∈ N,
d(wj , vj)

j
≤ d(wj , uj)

j
+

d(uj , vj)

j
≤ sup

j∈N

{
d(wj , uj)

j

}
+ sup

j∈N

{
d(uj , vj)

j

}
= D(w, u) + D(u, v) whence

D(w, u) + D(u, v) is an upper bound of

{
d(uj , vj)

j
; j ∈ N

}
. Thus D(w, v) =

sup
j∈N

{
d(wj , vj)

j

}
≤ D(w, u) +D(u, v).

Now let us see that the topology induced by D and the product topology
of (RT )N are the same. Recall that, in metric spaces, B(w, r) denotes the ball
of centre w and radius r, because of this, B(w, r) = {u ∈ (RT )N; D(u,w) < r}
and B(wj , r) = {uj ∈ RT ; D(uj , wj) < r}. Let us see that every open set
in the product topology is also open in the topology induced by D. Let U
be an arbitrary, open set in the product topology and let w = (wj)j∈N ∈ U .

We have that U =
∏
j∈N

Aj , where there is n ∈ N such that Aj is open on

RT for all j ∈ {1, . . . , n} and Aj = RT for all j > n. Further, wj ∈ Aj

for all j ∈ {1, . . . , n}. For each j ∈ {1, . . . , n}, if wj = Φ we take rj = 1,
hence B(wj , rj) = {Φ} ⊂ Aj , if wj 6= Φ, since ϕ−1 is continuous (ϕ is the
homeomorphism which appears in (1)), there is a positive rj ∈ R such that

B(wj , rj) ⊂ Aj . Now let r := min

{
rj
j

; j ∈ {1, . . . , n}
}

. If u = (uj)j∈N ∈

B(w, r) then
d(wj , uj)

j
≤ D(w, u) < r for all j ∈ N. For each j ∈ {1, . . . , n},

r ≤ rj
j

, whence
d(wj , uj)

j
) < r ≤ rj

j
. Hence d(wj , uj) < rj , whence uj ∈
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B(wj , rj) ⊂ Aj so that uj ∈ Aj for all j ∈ {1, . . . , n}. Thus u ∈ U , whence
B(w, r) ⊂ U .

Now let us see that every ball in metric D is an open set in the product
topology. Let there be an arbitrary w = (wj)j∈N ∈ (RT )N and an arbitrary, pos-

itive r ∈ R. Let n ∈ N such that n >
2

r
, whence

2

n
< r. For each j ∈ {1, . . . , n},

if wj = Φ, we take Aj = {Φ} and so Aj ⊂ B(wj , r); if wj 6= Φ, since ϕ is
continuous, there is a neighbourhood Aj of wj such that Aj ⊂ B(wj , r). Let

U = A1×· · ·×An×RT ×RT ×· · · . If u = (uj)j∈N ∈ (RT )N then
d(wj , uj)

j
≤ 2

n

for all j ≥ n. Hence D(w, u) ≤ max

{
d(w1, u1)

1
, . . . ,

d(wn, un)

n
,

2

n

}
. There-

fore if u ∈ U then D(w, u) ≤ max

{
d(w1, u1)

1
, . . . ,

d(wn, un)

n
,

2

n

}
< r. Thus

u ∈ B(w, r), whence U ⊂ B(w, r). �

As (RT )N is metrical, all results on metric spaces hold.

Corollary 4.2 (RT )N is a complete,13 metric space.

Proof. Every compact, metric space is complete and (RT )N is compact and
metric. �

As (RT )N is complete, all results on complete, metric spaces hold.
Our proof of the existence of hypercyclic, possible worlds is given in terms

of a product topology, in which one measures distance over an arbitrarily large
but finite number of co-ordinates. In this topology we cannot require proximity
of an actually infinite number of co-ordinates but we can require proximity
of a potentially infinite number of co-ordinates. But our logical space of all
possible worlds, (RT )N, has a metric, D, compatible with its topology. Hence
we can speak of proximity in terms of distance over an actually infinite number

of co-ordinates. See Proposition 4.1, D(w, u) = sup
j∈N

{
d(wj , uj)

j

}
. Thus D

works on all co-ordinates. One might ask how does a metric, which works
over infinitely many co-ordinates, agree with a topology which works over only
finitely many co-ordinates? The answer is that as j is in the denominator of
the metric D, when j is large, the j-th co-ordinate influences the metric, D,
to an asymptotically small degree. The proof of Proposition 4.1 gives further
details.

13A metric space, M , is called complete, if and only if every Cauchy sequence in M con-
verges in M . A sequence (xn)n∈N, in a metric space, is a Cauchy sequence if and only if,
given arbitrary ε > 0, there is an N ∈ N such that d(xn, xm) < ε for all n,m ≥ N .
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In summary we can interpret the existence of an hypercyclic world in (RT )N

as follows: there is a possible world, w, such that, given any possible world u,
there is a possible world, v, which is metrically as close to u as one can want,
such that w accesses v. This means that w accesses any possible world “by
metrical approximation.”

5 Discussion

The main achievement of this paper is to prove the existence of universal
possible worlds that describe all possible worlds. We regard each universal
worlds as a theory of everything. Firstly a universal world is a theory in the
sense that it provides a description. Secondly a universal world is a theory
of everything in the sense that operating on it produces descriptions of every
possible world in our logical universe.

We began by constructing a Cartesian co-ordinate frame. We constructed
a countable infinitude, ℵ0, of axes and a continuum, c, of points in space. We
chose to label the axes with atomic predicates. This agrees with the usual
assumption that predicates are enunciated in a discrete language so that there
are countably many predicates. It follows that there are infinitely many atomic
predicates because, in some particular logic, we may take finitely many atomic
predicates, p1, p2, ..., pn as axioms but we may then take all of the pn+1, pn+2, ...
as an infinitude of atomic predicates such that predicate pn+i means “I am the
(n + i)’th predicate.” We require an infinitude of predicates because hyper-
cyclicity is a property only of infinite dimensional spaces [6]. Every point in our
Cartesian space is then a possible world whose co-ordinates are the semantic
values of its atomic predicates. Equivalently the points are molecular predi-
cates. At this juncture we could have used the usual results of analysis to prove
the existence of hypercyclic, possible worlds but this would have required us to
make some special commitment to a set of semantic values that are compatible
with particular logics and with analysis. We preferred to adopt the transreal
numbers as semantic values because we believe them to be compatible with all
logics and we have proved, elsewhere, that they are compatible with analysis
[33]. We were then obliged to develop the mathematics of trans-Cartesian and
transvector spaces, trans-Boolean algebras, and to generalise the usual proofs
of hypercyclicity. This established our main results about universal possible
worlds and it gives us a mathematical foundation for many different logical
and mathematical treatments, some of which we now discuss.

Having established trans-Boolean algebras, we may take the axes or points
of our logical space as trans-Boolean terms and we may go on to construct
higher cardinality spaces where we take the axes or points as terms. For ex-
ample, in [16], we operate on the set of all possible worlds as a single term.
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In his book, Counterfactuals, [24], David Lewis introduces the idea that for
any possible world there are concentric spheres of possible worlds around it,
whose similarity, to the central world, can be measured by their radius. This
notion is vague but we can now put it on a firm, mathematical footing.

Recall that we have supplied a topological measure of distance, a particular
metric, and we have indicated the existence of infinitely many Urysohn metrics
[33]. Any of these is sufficient to order a transvector with a finite number of
co-ordinates so, in general, we may consider the distance between worlds over
some arbitrarily large, but fixed, number of co-ordinates. These co-ordinates
relate to whatever atomic predicates are of interest to us but, conversely, we
cannot distinguish between worlds that differ only in co-ordinates that we are
not considering. This agrees with Lewis’s view that there may be worlds that
are effectively indistinguishable to us [24] p 15.

However, when transvectors lie in certain special configurations, we can
usefully compute our distance measures over infinitely many co-ordinates. One
such configuration is the comparison of a possible world with itself. If any of
our distance measures are taken over infinitely many co-ordinates then the
distance between two worlds is zero if and only if the worlds are identical.
In other words, every world is identical only to itself, thus preserving identity
across all possible worlds. This settles Lewis’s doubt on this point, [24] p 14-15,
29.

In this paper we work with a finite distance metric d(x, y), defined in equa-
tion 1. But we may choose to work with a transmetric [2]. Wherever we do
work with a transmetric we may define similarity to be the reciprocal of dis-
tance. With a transmetric, worlds that are distant to a degree x are similar to a
degree 1/x. In particular, worlds that are identical have a distance apart of zero
and a similarity of infinity because, in transreal arithmetic, 1/0 =∞; infinitely
distant worlds have a similarity of zero because 1/∞ = 0; and gap worlds, with
a distance of nullity, are similar to degree nullity because 1/Φ = Φ. Distance
measures may be chosen to supply special weightings or to satisfy mathe-
matical aesthetics. We expect that many readers will be content to use the
trans-Euclidean metric [2], computed over finitely many, chosen co-ordinates.
This metric, t(x, y), returns zero for all equal arguments, x = y, and otherwise
computes the Euclidean metric, t(x, y) =

√
(x− y)2, but evaluated in transreal

arithmetic.
Lewis proves [24] p 20, using an appeal to the continuum, that there is no

distinct world that lies nearest to the central world. As the transreal num-
bers form a continuum, this result also holds in our logical space. However,
Lewis also considers logical systems, which obey his Limit Assumption [24] p
19-20, in which there is a nearest, distinct world. Lewis obtains these worlds,
non-paradoxically, by considering only the accessible worlds, [24] p 4-8, about
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a central world, not all possible worlds about a central world. In other words,
Lewis punctures some possible worlds from the space of all possible worlds.
This is a legitimate manoeuvre in our logical space. It jeopardises our hyper-
cyclicity results but does not, necessarily, negate them. We have generalised
hypercyclicity to a continuous, transreal space but hypercyclicity is also ordi-
narily established in various infinite lattices, in which case one might choose
a puncturing that does not disturb a particular lattice, thus obtaining both
Lewis’s results in conditional, counterfactual logics and our results in hyper-
cyclic, universal worlds. Alternatively one could accept that our hypercyclic
results hold everywhere in a continuous space of all possible worlds and that
Lewis’s results hold in a subspace of this space.

Lewis considers centred logical systems in which the central world is present
in a sphere and uncentered logical systems in which the central world is not
present in the sphere [24] p 14. This latter is simply a puncturing of our logical
space and is entirely unproblematic. Our hypercyclicity results are obtained by
establishing limits to a central world and these limits need not arrive, indeed
generally do not arrive, exactly at the central world.

Lewis considers that there is a continuum of concentric spheres that fill out
a ball centred on any world [24] p 7. As our transreal space is continuous, it is
composed of such solid balls.

Lewis considers asymmetric measures of distance [24] p 9, 50-52. These may
be had by taking two or more copies of our logical space and applying different
distance measures in each copy, for example by applying a single distance
measure over different co-ordinates. Thus all of our results hold, relative to
any particular choice of trans-Cartesian co-ordinate frame, set of co-ordinates,
and choice of distance measure.

There is a trivial way to deal with conditional and, specifically, counter-
factual implications: simply form the ordinary implication in every possible
world then the conditional implication holds just in those world in which the
ordinary implication holds and the conditional implication does not hold in all
of the other worlds. Hence, by keeping track of subspaces, we can pursue even
alternating sequences of non-monotonic reasoning to arbitrary degree.

Let us now turn our attention to some philosophical consequence of hyper-
cyclicity. In topological terms a hypercyclic vector has a denumerable infinitude
of components. A mechanical procedure, we use the backward shift operator,
applied to a hypercyclic vector, produces a new, generally distinct, vector that
lies in the orbit of its hypercyclic generator. The mechanical procedure may be
applied a denumerable infinitude of times, in which case the orbit is infinitely
dense in the whole of space. Furthermore, worlds in the orbit can be selected
in sequences which converge to any particular world. If we regard a hyper-
cyclic vector as a theory, say by virtue of being a binding of all possible atomic
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predicates to semantic values, then a mechanical procedure generates theories
that are close to every world and we may refine the procedure by constructing
a sequence of theories that converges to, but does not necessarily arrive at,
an exact description of any particular world. This has an implication for the
philosophy of science. Our actual world can be described, arbitrarily closely,
by an infinitude of possible worlds. It is conceivable that human minds, in
our actual world, might access such a hypercyclic world, by constructing a
description of it, and go on, by either mechanical or more directed means, to
discover everything to arbitrary accuracy. It has been our pleasure to supply
an existential proof of this possibility but, regrettably, we are unable to provide
a constructive proof!

6 Conclusion

We develop a numerical model for a total semantics and a geometrical model
of the space of all possible worlds. We define the set of semantic values as the
set of transreal numbers, RT , and define logical connectives in RT so that we
obtain a total semantics, that is, a semantics that contains all of the classical,
paraconsistent, fuzzy and gap values. We define each possible world as a se-
quence of transreal numbers. We define trans-Boolean logic and transvector
spaces and define accessibility relations between possible worlds as the exis-
tence of suitable, continuous, translinear transformations in the transvector
space (RT )N. We show that this accessibility relation is reflexive and transi-
tive. We show that the set of possible worlds, (RT )N, is a topological metric
space and that there is a hypercyclic operator on it. This means that there
are infinitely many possible worlds which can access any other by topological
approximation. That is, we prove the existence of infinitely many universal,
possible worlds.

We also observe that there are at least a denumerable infinitude of hyper-
cyclic worlds that lie arbitrarily close to, and one of which may be identical
with, the possible world that is an exact description of the real world we live in.
This raises the possibility that entities within our world, such as human minds,
might access one or more of these hypercyclic worlds and, thereby, embark on
an unending process of discovering everything.
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